\(\int \cos ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx\) [479]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 298 \[ \int \cos ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=-\frac {4 a \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{21 b d}+\frac {2 \cos ^3(c+d x) (a+b \sin (c+d x))^{3/2}}{9 b d}-\frac {8 \left (4 a^4-15 a^2 b^2-21 b^4\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{315 b^4 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {32 a \left (a^4-4 a^2 b^2+3 b^4\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{315 b^4 d \sqrt {a+b \sin (c+d x)}}-\frac {4 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a \left (a^2-3 b^2\right )-3 b \left (a^2+7 b^2\right ) \sin (c+d x)\right )}{315 b^3 d} \]

[Out]

2/9*cos(d*x+c)^3*(a+b*sin(d*x+c))^(3/2)/b/d-4/21*a*cos(d*x+c)^3*(a+b*sin(d*x+c))^(1/2)/b/d-4/315*cos(d*x+c)*(4
*a*(a^2-3*b^2)-3*b*(a^2+7*b^2)*sin(d*x+c))*(a+b*sin(d*x+c))^(1/2)/b^3/d+8/315*(4*a^4-15*a^2*b^2-21*b^4)*(sin(1
/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^
(1/2))*(a+b*sin(d*x+c))^(1/2)/b^4/d/((a+b*sin(d*x+c))/(a+b))^(1/2)-32/315*a*(a^4-4*a^2*b^2+3*b^4)*(sin(1/2*c+1
/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))
*((a+b*sin(d*x+c))/(a+b))^(1/2)/b^4/d/(a+b*sin(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 298, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {2774, 2941, 2944, 2831, 2742, 2740, 2734, 2732} \[ \int \cos ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=-\frac {4 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a \left (a^2-3 b^2\right )-3 b \left (a^2+7 b^2\right ) \sin (c+d x)\right )}{315 b^3 d}+\frac {32 a \left (a^4-4 a^2 b^2+3 b^4\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{315 b^4 d \sqrt {a+b \sin (c+d x)}}-\frac {8 \left (4 a^4-15 a^2 b^2-21 b^4\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{315 b^4 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {2 \cos ^3(c+d x) (a+b \sin (c+d x))^{3/2}}{9 b d}-\frac {4 a \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{21 b d} \]

[In]

Int[Cos[c + d*x]^4*Sqrt[a + b*Sin[c + d*x]],x]

[Out]

(-4*a*Cos[c + d*x]^3*Sqrt[a + b*Sin[c + d*x]])/(21*b*d) + (2*Cos[c + d*x]^3*(a + b*Sin[c + d*x])^(3/2))/(9*b*d
) - (8*(4*a^4 - 15*a^2*b^2 - 21*b^4)*EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/(3
15*b^4*d*Sqrt[(a + b*Sin[c + d*x])/(a + b)]) + (32*a*(a^4 - 4*a^2*b^2 + 3*b^4)*EllipticF[(c - Pi/2 + d*x)/2, (
2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(315*b^4*d*Sqrt[a + b*Sin[c + d*x]]) - (4*Cos[c + d*x]*Sqrt[
a + b*Sin[c + d*x]]*(4*a*(a^2 - 3*b^2) - 3*b*(a^2 + 7*b^2)*Sin[c + d*x]))/(315*b^3*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2774

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + p))), x] + Dist[g^2*((p - 1)/(b*(m + p))), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*(b + a*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g, m}, x] &&
NeQ[a^2 - b^2, 0] && GtQ[p, 1] && NeQ[m + p, 0] && IntegersQ[2*m, 2*p]

Rule 2831

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2941

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[(-d)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(f*g*(m + p + 1))), x
] + Dist[1/(m + p + 1), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1)*Simp[a*c*(m + p + 1) + b*d*m + (a*
d*m + b*c*(m + p + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] &&
GtQ[m, 0] &&  !LtQ[p, -1] && IntegerQ[2*m] &&  !(EqQ[m, 1] && NeQ[c^2 - d^2, 0] && SimplerQ[c + d*x, a + b*x])

Rule 2944

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*((b*c*(m + p + 1) -
 a*d*p + b*d*(m + p)*Sin[e + f*x])/(b^2*f*(m + p)*(m + p + 1))), x] + Dist[g^2*((p - 1)/(b^2*(m + p)*(m + p +
1))), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*Simp[b*(a*d*m + b*c*(m + p + 1)) + (a*b*c*(m + p + 1
) - d*(a^2*p - b^2*(m + p)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2,
0] && GtQ[p, 1] && NeQ[m + p, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*m]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \cos ^3(c+d x) (a+b \sin (c+d x))^{3/2}}{9 b d}+\frac {2 \int \cos ^2(c+d x) (b+a \sin (c+d x)) \sqrt {a+b \sin (c+d x)} \, dx}{3 b} \\ & = -\frac {4 a \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{21 b d}+\frac {2 \cos ^3(c+d x) (a+b \sin (c+d x))^{3/2}}{9 b d}+\frac {4 \int \frac {\cos ^2(c+d x) \left (4 a b+\frac {1}{2} \left (a^2+7 b^2\right ) \sin (c+d x)\right )}{\sqrt {a+b \sin (c+d x)}} \, dx}{21 b} \\ & = -\frac {4 a \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{21 b d}+\frac {2 \cos ^3(c+d x) (a+b \sin (c+d x))^{3/2}}{9 b d}-\frac {4 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a \left (a^2-3 b^2\right )-3 b \left (a^2+7 b^2\right ) \sin (c+d x)\right )}{315 b^3 d}+\frac {16 \int \frac {-\frac {1}{4} a b \left (a^2-33 b^2\right )-\frac {1}{4} \left (4 a^4-15 a^2 b^2-21 b^4\right ) \sin (c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx}{315 b^3} \\ & = -\frac {4 a \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{21 b d}+\frac {2 \cos ^3(c+d x) (a+b \sin (c+d x))^{3/2}}{9 b d}-\frac {4 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a \left (a^2-3 b^2\right )-3 b \left (a^2+7 b^2\right ) \sin (c+d x)\right )}{315 b^3 d}+\frac {\left (16 a \left (a^4-4 a^2 b^2+3 b^4\right )\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}} \, dx}{315 b^4}+\frac {\left (4 \left (-4 a^4+15 a^2 b^2+21 b^4\right )\right ) \int \sqrt {a+b \sin (c+d x)} \, dx}{315 b^4} \\ & = -\frac {4 a \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{21 b d}+\frac {2 \cos ^3(c+d x) (a+b \sin (c+d x))^{3/2}}{9 b d}-\frac {4 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a \left (a^2-3 b^2\right )-3 b \left (a^2+7 b^2\right ) \sin (c+d x)\right )}{315 b^3 d}+\frac {\left (4 \left (-4 a^4+15 a^2 b^2+21 b^4\right ) \sqrt {a+b \sin (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}} \, dx}{315 b^4 \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {\left (16 a \left (a^4-4 a^2 b^2+3 b^4\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}} \, dx}{315 b^4 \sqrt {a+b \sin (c+d x)}} \\ & = -\frac {4 a \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{21 b d}+\frac {2 \cos ^3(c+d x) (a+b \sin (c+d x))^{3/2}}{9 b d}-\frac {8 \left (4 a^4-15 a^2 b^2-21 b^4\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{315 b^4 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {32 a \left (a^4-4 a^2 b^2+3 b^4\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{315 b^4 d \sqrt {a+b \sin (c+d x)}}-\frac {4 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a \left (a^2-3 b^2\right )-3 b \left (a^2+7 b^2\right ) \sin (c+d x)\right )}{315 b^3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.62 (sec) , antiderivative size = 233, normalized size of antiderivative = 0.78 \[ \int \cos ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\frac {32 \left (a b^2 \left (a^2-33 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{4} (-2 c+\pi -2 d x),\frac {2 b}{a+b}\right )+\left (4 a^4-15 a^2 b^2-21 b^4\right ) \left ((a+b) E\left (\frac {1}{4} (-2 c+\pi -2 d x)|\frac {2 b}{a+b}\right )-a \operatorname {EllipticF}\left (\frac {1}{4} (-2 c+\pi -2 d x),\frac {2 b}{a+b}\right )\right )\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}+2 b \cos (c+d x) (a+b \sin (c+d x)) \left (-32 a^3+106 a b^2+10 a b^2 \cos (2 (c+d x))+b \left (24 a^2+203 b^2\right ) \sin (c+d x)+35 b^3 \sin (3 (c+d x))\right )}{1260 b^4 d \sqrt {a+b \sin (c+d x)}} \]

[In]

Integrate[Cos[c + d*x]^4*Sqrt[a + b*Sin[c + d*x]],x]

[Out]

(32*(a*b^2*(a^2 - 33*b^2)*EllipticF[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)] + (4*a^4 - 15*a^2*b^2 - 21*b^4)*((a
+ b)*EllipticE[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)] - a*EllipticF[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]))*Sqr
t[(a + b*Sin[c + d*x])/(a + b)] + 2*b*Cos[c + d*x]*(a + b*Sin[c + d*x])*(-32*a^3 + 106*a*b^2 + 10*a*b^2*Cos[2*
(c + d*x)] + b*(24*a^2 + 203*b^2)*Sin[c + d*x] + 35*b^3*Sin[3*(c + d*x)]))/(1260*b^4*d*Sqrt[a + b*Sin[c + d*x]
])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1188\) vs. \(2(340)=680\).

Time = 3.07 (sec) , antiderivative size = 1189, normalized size of antiderivative = 3.99

method result size
default \(\text {Expression too large to display}\) \(1189\)

[In]

int(cos(d*x+c)^4*(a+b*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/315*(-35*b^6*sin(d*x+c)^6-40*a*b^5*sin(d*x+c)^5+16*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))
^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^5*b-12*
((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b
*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^4*b^2-64*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a
+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^3*b
^3-72*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF
(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^2*b^4+48*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1
)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))
*a*b^5+84*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*Ellip
ticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*b^6-16*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1
)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))
*a^6+76*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*Ellipti
cE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^4*b^2+24*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)
-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2
))*a^2*b^4-84*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*E
llipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*b^6+a^2*b^4*sin(d*x+c)^4+112*b^6*sin(d*x+c)^4-2*a
^3*b^3*sin(d*x+c)^3+146*a*b^5*sin(d*x+c)^3-8*sin(d*x+c)^2*a^4*b^2+28*sin(d*x+c)^2*a^2*b^4-77*sin(d*x+c)^2*b^6+
2*sin(d*x+c)*a^3*b^3-106*sin(d*x+c)*a*b^5+8*a^4*b^2-29*a^2*b^4)/b^5/cos(d*x+c)/(a+b*sin(d*x+c))^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.14 (sec) , antiderivative size = 534, normalized size of antiderivative = 1.79 \[ \int \cos ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\frac {2 \, {\left (2 \, \sqrt {2} {\left (8 \, a^{5} - 33 \, a^{3} b^{2} + 57 \, a b^{4}\right )} \sqrt {i \, b} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right ) + 2 \, \sqrt {2} {\left (8 \, a^{5} - 33 \, a^{3} b^{2} + 57 \, a b^{4}\right )} \sqrt {-i \, b} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right ) - 6 \, \sqrt {2} {\left (-4 i \, a^{4} b + 15 i \, a^{2} b^{3} + 21 i \, b^{5}\right )} \sqrt {i \, b} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right )\right ) - 6 \, \sqrt {2} {\left (4 i \, a^{4} b - 15 i \, a^{2} b^{3} - 21 i \, b^{5}\right )} \sqrt {-i \, b} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right )\right ) + 3 \, {\left (5 \, a b^{4} \cos \left (d x + c\right )^{3} - 8 \, {\left (a^{3} b^{2} - 3 \, a b^{4}\right )} \cos \left (d x + c\right ) + {\left (35 \, b^{5} \cos \left (d x + c\right )^{3} + 6 \, {\left (a^{2} b^{3} + 7 \, b^{5}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )\right )} \sqrt {b \sin \left (d x + c\right ) + a}\right )}}{945 \, b^{5} d} \]

[In]

integrate(cos(d*x+c)^4*(a+b*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

2/945*(2*sqrt(2)*(8*a^5 - 33*a^3*b^2 + 57*a*b^4)*sqrt(I*b)*weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27
*(8*I*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) - 2*I*a)/b) + 2*sqrt(2)*(8*a^5 - 33*a^3
*b^2 + 57*a*b^4)*sqrt(-I*b)*weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b^3, 1/
3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*I*a)/b) - 6*sqrt(2)*(-4*I*a^4*b + 15*I*a^2*b^3 + 21*I*b^5)*sqrt(I
*b)*weierstrassZeta(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, weierstrassPInverse(-4/3*(4*a^2
 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) - 2*I*a)/b)) - 6*sq
rt(2)*(4*I*a^4*b - 15*I*a^2*b^3 - 21*I*b^5)*sqrt(-I*b)*weierstrassZeta(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a
^3 + 9*I*a*b^2)/b^3, weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b^3, 1/3*(3*b*
cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*I*a)/b)) + 3*(5*a*b^4*cos(d*x + c)^3 - 8*(a^3*b^2 - 3*a*b^4)*cos(d*x + c
) + (35*b^5*cos(d*x + c)^3 + 6*(a^2*b^3 + 7*b^5)*cos(d*x + c))*sin(d*x + c))*sqrt(b*sin(d*x + c) + a))/(b^5*d)

Sympy [F]

\[ \int \cos ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\int \sqrt {a + b \sin {\left (c + d x \right )}} \cos ^{4}{\left (c + d x \right )}\, dx \]

[In]

integrate(cos(d*x+c)**4*(a+b*sin(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*sin(c + d*x))*cos(c + d*x)**4, x)

Maxima [F]

\[ \int \cos ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\int { \sqrt {b \sin \left (d x + c\right ) + a} \cos \left (d x + c\right )^{4} \,d x } \]

[In]

integrate(cos(d*x+c)^4*(a+b*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sin(d*x + c) + a)*cos(d*x + c)^4, x)

Giac [F]

\[ \int \cos ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\int { \sqrt {b \sin \left (d x + c\right ) + a} \cos \left (d x + c\right )^{4} \,d x } \]

[In]

integrate(cos(d*x+c)^4*(a+b*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sin(d*x + c) + a)*cos(d*x + c)^4, x)

Mupad [F(-1)]

Timed out. \[ \int \cos ^4(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\int {\cos \left (c+d\,x\right )}^4\,\sqrt {a+b\,\sin \left (c+d\,x\right )} \,d x \]

[In]

int(cos(c + d*x)^4*(a + b*sin(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^4*(a + b*sin(c + d*x))^(1/2), x)